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Chapter 1

Paratopological groups. Basic facts

1.1 Basic definitions

In classic abstract algebra we can distinguish many different objects (semigroups, monoids, groups).
Here we will equip them with topologies. In this section we will introduce few basic definitions about
groups. First we will present definitions of left and right topological semigroups.

Definition 1. A right topological semigroup consists of a semigroup S and a topology τ on S such that
for all a ∈ S, the right action %a of a on S is a continuous mapping of the space S to itself.

Definition 2. A left topological semigroup consists of a semigroup S and a topology τ on the set S such
that for all a ∈ S, the left action λa of a on S is a continuous mapping of the space S to itself.

Definition 3. A semitopological semigroup is a right topological semigroup which is also a left topological
semigroup.

Now we define some kinds of topological groups.

Definition 4. A left (right) topological group is a left (right) topological semigroup whose underlying se-
migroup is a group, and a semitopological group is a left topological group which is also a right topological
group.

Definition 5. A paratopological group G is a group G with a topology on the set G that makes the
multiplication mapping G×G→ G continuous, when G×G is given the product topology.

Definition 6. For a group G, the inverse mapping In : G→ G is defined by the rule In(x) = x−1, for
each x ∈ G. A semitopological group with continuous inverse is called a quasitopological group.

Definition 7. A topological group G is a paratopological group G such that the inverse mapping In : G→
G is continuous.

Fact 1. An easy verification shows that G is a topological group if and only if the mapping (x, y) 7→ xy−1

of G×G to G is continuous.

In our next considerations we will focus on paratopological groups. In next section we will present
some important fact about this structure.
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1.2 Examples

1. Consider the topology on R with the base B consisting of the sets [a, b) = {x ∈ R : a ¬ x < b},
where a, b ∈ R and a < b. For any a and b, the interval [a, b) is clopen in R

[ )
a b

With this topology, and the natural addition in the role of multiplication, R is a paratopological
group and, therefore,a topological semigroup. However, (R, τ) is not a topological group since the
inverse operation x 7→ −x is discontinuous. This paratopological group is called the Sorgenfrey
line.
Sorgenfrey line has many interesting properties

• Sorgenfrey line is finer (has more open sets) than the standard topology on the real numbers
(which is generated by the open intervals). The reason is that every open interval can be
written as a countably infinite union of half-open intervals.

• Any compact subset of (R, τ) must be an at most countable set.

• It is a perfectly normal Hausdorff space.

• It is first-countable and separable, but not second-countable.

• is a Baire space.

2. Another example is also connected with the Sorgenfrey line.
Let G = S2 where S is the Sorgenfrey line, and let

N = {(x,−x) : x ∈ Q}.

N is a closed subgroup of the paratopological (Abelian) group G, but the quotient paratopological
group G/N is not Hausdorff.

1.3 Main properties of paratopological groups

Theorem 1. Let X be a compact Hausdorff paratopological group. Then the inverse operation in X is
continuous and, therefore, X is a topological group.

Proof.
Let e be the neutral element of X. Since group X is Hausdorff, the set M = {(x, y) ∈ X ×X : xy = e}
is closed in the Cartesian product X×X. Now, let F be any closed subset of X, and P = (X×F )∩M .
Then F and X × F are compact, P closed in X × F , since M is closed, therefore, P is compact set.
Now, (x, y) ∈ P if and only if y ∈ F and xy = e, that is, x = y−1. So the image of P under the natural
projection of X × X onto the first factor X is precisely F−1. Since F is compact and the projection
mappings is continuous, we conclude that F−1 is compact and closed in X. So the inverse operation in
X is continuous.

Theorem 2. Suppose that X is a Hausdorff paratopological group. Then, for each compact subset F of
X, the set F−1 is closed in X.
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To prove this theorem clearly, we need to show definition of ultrafilter

Definition 8. Given a set X, an ultrafilter on X is a set U consisting of subsets of X such that

i) ∅ 6∈ U

ii) If A ⊂ X,B ⊂ X,A ⊂ B, and A ∈ U then B ∈ U .

iii) If A,B ∈ U , then A ∩B ∈ U .

iv) If A ⊂ X, then either A or X \ A is an element of U .

Proof. [Th.2]
Let x be in the closure of F−1. There exists an ultrafilter ξ on F−1 converging to x. Then η = {P−1 : P ∈
ξ} is an ultrafilter on F . Since F is compact, there exists a point y ∈ F such that η converges to y.
From the continuity of the multiplication in X (X is paratopological group) it follows that the family
γ = {PP−1 : P ∈ γ} converges to the point z = xy. From the other side, the neutral element e of X
belongs to all elements of γ. Since X is Hausdorff space, we conclude that z = e, which implies that
x = y−1 ∈ F−1. Thus, F−1 is closed in X.

Theorem 3. If X is a locally compact Hausdorff paratopological group, then the inverse operation in it
is continuous, that is, X is a topological group.

To prove this theorem we need the following lemma.

Lemma 1. Suppose that X is a semitopological group, {Un : n ∈ ω} is a sequence of open neighbourhoods
of the neutral element e of X, and {xn : n ∈ ω} is a sequence of points in X such that xn ∈ Un, for each
n ∈ ω, and the next conditions are satisfied:

i) U2n+1 ⊂ Un for each n ∈ ω;

ii) the sequence {yk : k ∈ N}, where yk = x1 . . . xk, has an accumulation point y in X. Then there exists
k ∈ ω such that x−1k+1 ∈ U0.

Proof.
Since yU1 is a neighbourhood of y, there exists k ∈ N s.t. yk ∈ yU1. Let put z = y−1k+1y. Then

x−1k+1 = y−1k+1yk ∈ y−1k+1yU1 = zU1

and z is an accumulation point of the sequence {y−1k+1ym : m ∈ N}, by the separate continuity of multi-
plication in X (X is the semitopological group). It follows from condition i) of the lemma that, for each
m > k + 2,

y−1k+1ym = xk+2 . . . xm ∈ Uk+2 . . . Um ⊂ Uk+1.

Therefore, z ∈ Uk+1 ⊂ Uk, which implies that x−1k+1 ∈ zU1 ⊂ UkU1 ⊂ U0.

So now we can prove the theorem.
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Proof. [Th.3]
We need to check the continuity of the inverse at the neutral element e of X. So let assume the contrary.
Then we can find an open neighbourhood U of e such that for each open set V containing e, V −1 is not
a subset of U . Using the regularity of X and the continuity of multiplication, we can define a sequence
of open sets {Un : n ∈ ω} in X satisfying condition i) of Lemma 1. Since X is locally compact, we can
also assume that the closure of U0 is compact and contained in U . Now, by the choice of U , we can
find a point xn ∈ Un s.t. x−1n is not in U , for each n ∈ ω. Put yk = x1 . . . xk, for each k ∈ N. Then it
easily follows from condition i) that all elements yk are in U0. Since the closure of U0 is compact, there
exists an accumulation point y for the sequence {yk : k ∈ N} in X. Thus all conditions of Lemma 1 are
satisfied; by using it, we obtain k ∈ ω such that x−1k+1 ∈ U0, contradicting U0 ⊂ U and x−1k+1 ∈ X \U.

Theorem 4. [A.V. Arhangelskii and E.A. Reznichenko]
Suppose that G is a paratopological group such that G is a dense Gδ−set in a regular feebly compact

space X. Then G is a topological group.

Before we prove this theorem we need to introduce definition of Gδ−set, feebly compact space and prove
necessary lemmas.

Definition 9. In a topological space a Gδ−set is a countable intersection of open sets.

Definition 10. A topological space is feebly compact if every locally finite cover by nonempty open sets
is finite.

Lemma 2. Suppose that G is a paratopological group, and U any open neighbourhood of the neutral
element e ∈ G. Then M ⊂MU−1, for each subset M of G.

Proof.
Put A = {g ∈ G : gU ∩M = ∅} and F = G \ AU . Then, clearly, F is a closed subset of G and M ⊂ F .
Therefore, M ⊂ F . Take any y ∈ F . Then yU ∩M = ∅, that is, yh = m, for some h ∈ U and m ∈ M .
Hence, y = mh−1 ∈MU−1. Thus, F ⊂MU−1. Since M ⊂ F , it follows that M ⊂MU−1.

Lemma 3. Suppose that G is a paratopological group and not a topological group. Then there exists an
open neighbourhood U of the neutral element e of G such that U ∩ U−1 is nowhere dense in G, that is,
the interior of the closure of U ∩ U−1 is empty.

Proof.
The inverse operation in G is discontinuous. Therefore, it is discontinuous at e, and we can choose an
open neighbourhood W of e such that e 6∈ Int(W−1). Since multiplication is continuous in G, we can
find an open neighbourhood U of e such that U3 ⊂ W . We claim that the set U ∩U−1 is nowhere dense
in G. Assume the contrary. Then there exists a non-empty open set V in G such that V ⊂ U∩U−1. From
Lemma 2 it follows that V ⊂ U∩U−1 ⊂ (U∩U−1)U−1 ⊂ U−2. Then V U−1 ⊂ U−3 ⊂ W−1. So V ∩U = ∅,
and the set V U−1 is open in G. Therefore, e ∈ V U−1 ⊂ Int(W−1). So we have a contradiction.

So now we can start prove our theorem.

Proof. [Th.4]
Assume the contrary. Then, by lemma 3, there exists an open neighbourhood U of the neutral element
e of G such that U ∩U−1 is nowhere dense. Let W be an open neighbourhood of e such that WW ⊂ U .
Put O = W \ U ∩ U−1. Then, clearly, O ⊂ W ⊂ O and O−1 ∩ U = ∅.
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First, we fix a sequence {Mn : n ∈ ω} of open sets in X such that G =
⋂∞
n=0Mn .We are going to

define a sequence {Un : n ∈ ω} of open subsets of X and a sequence {xn : n ∈ ω} of elements of G such
that xn ∈ Un, for each n ∈ ω. Put U0 = O, and pick a point x0 ∈ U0 ∩G.

Assume now that, for some n ∈ ω, an open subset Un of X and a point xn ∈ Un ∩ G are already
defined. Since e ∈ W ⊂ O, we have xn ∈ xnO = xnO. Since Un is an open neighbourhood of xn, it follows
that Un ∩ xnO = ∅. We take xn+1 to be any point of Un ∩ xnO. Note that xn+1 ∈ G, since xnO ∈ G.

Using the regularity of X, we can find an open neighbourhood Un+1 of xn+1 in X such that the
closure of Un+1 is contained in Un ∩Mn, and Un+1 ∩G ⊂ xnO. The definition of the sets Un and points
xn, for each n ∈ ω, is complete. Note that Ui ⊂ Uj whenever j < i. We also have xn+1 ∈ xnO, for each
n ∈ ω.

Put F =
⋂
n∈ω Un. Clearly, F ⊂ G, and F 6= ∅ since X is feebly compact. The set FW is an open

neighbourhood of F in G. Consider the closure P of FW in X, and let H be the closure of X \P in X.
Then H is a regular closed subset of X, so that H is feebly compact.

We claim that H ∩ F = ∅. Indeed, assume the contrary, and fix x ∈ F ∩ H. Since FW is an open
neighbourhood of F in G, from x ∈ F it follows that there exists an open neighbourhood V of x in X

such that V ∩G ⊂ FW . Then the density of G in X implies that V ⊂ P , while x ∈ V ∩H implies that
V \ P = ∅, which is a contradiction. Thus H ∩ F = ∅.

Since H is feebly compact, our definition of F implies that Uk ∩ H = ∅, for some k ∈ ω (we use
that Ui ⊂ Uj whenever j < i). Then Uk ⊂ P . Since xk ∈ Uk ∩ G, it follows that xk ∈ FW . However,
F ⊂ Uk+2 ∩ G ⊂ xk+1O ⊂ xk+1W . Hence, xk ∈ FW ⊂ xk+1WW ⊂ xk+1U . Taking into account
that xk+1 ∈ xkO, we obtain that xk ∈ xkOU . Hence, e ∈ OU and O−1 ∩ U = ∅, which is again a
contradiction

Theorem 5. A dense subgroup of a precompact paratopological group is precompact

Proof. Let H be a dense subgroup of a precompact paratopological group G. Take an arbitrary neigh-
borhood U of the neutral element e in G. First we show that H contains a finite subset F such that
G = UF . Choose an open neighborhood V of e such that V 2 ⊂ U . Since G is precompact, there exists
a finite subset C of G such that G = V C. For every x ∈ C, take an element hx ∈ H ∩ x−1V and put
F = {h−1x : x ∈ C}. Clearly F is a finite subset of H. It follows from hx ∈ x−1V that x ∈ V h−1x,
hence Vx ⊂ V 2h−1x ⊂ Uh−1x, for each x ∈ C. We conclude, therefore, that G = V C ⊂ UF , i.e.,
UF = G. Finally, suppose that W is an open neighborhood of e in H. Take an open set U in G such
that W = U ∩ H. We have just shown that H contains a finite set F such that G = UF . Since H is
a subgroup of G, our choice of U implies that H = WF . A similar argument shows that H contains a
finite subset F ′ such that H = F ′W . Hence H is precompact.

Theorem 6. Let G be a paratopological group, F be a compact subset of G, and P be a closed subset of
G such that F ∩ P = ∅. Then there exists an open neighbourhood V of the neutral element e such that
FV ∩ P = ∅ and V F ∩ P = ∅.

Proof.
Since the left translations in group G are continuous, we can choose, for every x from F , an open
neighbourhood Vx of the neutral element e in G such that xVx ∩ P = ∅. Using the joint continuity of
the multiplication in G, we can also take an open neighbourhood Wx of element e such that W 2x ⊂ V x.
The open sets xWx, with x ∈ F , cover the compact set F , so there exists a finite set C ⊂ F such
that F ⊂ ⋃x∈C xWx. Put V1 =

⋂
x∈CWx. We claim that FV1 ∩ P = ∅. Indeed, it suffices to verify that
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yV1 ∩ P = ∅, for each y ∈ F . Given an element y ∈ F , we can find x ∈ C such that y ∈ xWx. Then
yV1 ⊂ xWxV1 ⊂ xWxWx ⊂ xVx ⊂ G \ P, by our choice of the sets Vx and Wx. This proves the fact that
the sets FV1 and P are disjoint. Similarly, one can find an open neighbourhood V2 of e in G satisfying
V2F ∩ P = ∅. Then the set V = V1 ∩ V2 is as required and our prove are finished.

Proposition 1. For any two compact subsets E and F of a paratopological group G, their product EF
in G is a compact subspace of G.

Proof.
Proof of this fact is very simple. Since multiplication in a paratopological group is jointly continuous,
the subspace EF of G is a continuous image of the Cartesian product E × F of the spaces E and F .
Since EF is compact, by Tychonoffs theorem, the space EF is also compact.

1.4 Exercises

Below we present few exercises, connected with paratopological groups.

1. Suppose that H is a dense subgroup of a paratopological group G with identity e. Show that if H
is commutative, then so is G. Verify that if n ∈ N and every element x ∈ H satisfies xn = e, then
all elements of G satisfy the same equation.

2. Prove that for every element g of a Hausdorff paratopological group G, the set

Gg = {x ∈ G : xg = gx}

is a closed subgroup of G. Show that Gg need not be invariant in G, even if G is a topological
group.

3. Let D be a dense subset of a topological group G. Verify that the equalities UD = G = DU hold
for every neighbourhood U of the neutral element in G. Is the conclusion valid for paratopological
(or quasitopological) groups?

4. Let G be an abstract group and n a positive integer. Prove that if τ is a Hausdorff paratopological
group topology on G, then the set G[n] = {x ∈ G : xn = eG} is closed in (G, τ). Does the
conclusion remain valid for semitopological (quasitopological) group topologies on G?

We will try to solve two of those exercices.

• Ad.3
It is known that Gg is (Hausdorf paratopological) subgroup of G for every g ∈ G3. We will show
that Gg is closed. Consider continuous translations λg and %g. Then Gg = {x ∈ G : λg(x) = %g(x)}.
We need a small lemmas to proceed.

Lemma. A topological space X is Hausdorff if and only if the diagonal

∆ = {(x, x) ∈ X ×X : x ∈ X}

is closed.
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Proof.
Assume that X is Hausdorff. Now pick (x, y) ∈ X ×X such that x 6= y. There exists a open set U
and V such that x ∈ U, y ∈ V and U ∩ V 6= ∅. Then U × V is open in X ×X and (x, y) ∈ U × V .
Clearly ∆ has an empty intersection with U × V . Then every point (X × X) \ ∆ lies with an
open neighbourhood. The complement of ∆ is open, which shows that ∆ is closed. The converse
will not be used in this exercise and the proof will be omitted.

Lemma. Let f, g : X → Y are two continuous functions between X and Y where Y is Hausdoff.
The equalizer {x ∈ X : f(x) = g(x)} is closed on X.

Proof.
Consider a map E : X × Y × Y defined as E(x, y) = (f(x), g(x)), E is clearly continuous. The
equalizer is a preimage of ∆ = {(y, y) ∈ Y × Y : y ∈ Y } under E, that means
{x ∈ X : f(x) = g(x)} = E−1(∆)

From the previous lemma ∆ is closed as Y is Hausdorf and then the equalizer is closed. Since
Gg is equalizer of λg and %g, this subgroup is closed. For a counterexample, consider the dihedral
group of order 6 (which is isomorphic to S3). Then for any symmetry s ∈ S3 we have Gs = {x ∈
S3: sx = xs} = {e, s} which fails to be an invariant group.

• Ad.4
Let D be a dense subset of a topological group G. Verify that the equalities UD = G = DU hold
for every neighbourhood U of the neutral element in G. UD can be described as

UD = {ud : u ∈ U, d ∈ D} =
⋃
d∈D
{ud : u ∈ U} =

⋃
d∈D

Ud =
⋃
d∈D

%d(U)

In a semitopological group for each x ∈ D the right translation the %x is an open map. It remains
to show that for every x ∈ G there exists d ∈ D such that x ∈ Ud. In quasitopological group
if D is dense, then so is D−1. Pick then d−1 ∈ D−1 such that d−1 ∈ x−1U . It is equivalent to
the statement that x ∈ Ud and therefore the main statement becomes proven for quasitopological
groups.
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